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Fractal dimensions of sediments in nature
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On the basis of fractals, the theory of sound attenuation was modified, in which the viscous wave-
length was proposed as a scale. By matching the theory to the data of the sound attenuation measured in
the sediment in nature, the lower and the upper cutoffs between which the power law proposed by Katz
and Thompson is valid were selected, and the fractal dimension of the sediment was obtained. Finally,
the fractal dimension of the medium can be estimated in the lower frequency range as well, where the

viscous wavelength is greater than the average radius.

PACS number(s): 05.60.+w, 91.60.Pn

The experimental data published by us [1] revealed
that the sound attenuation in a kind of water-saturated
riverbed coarse sand in the higher frequency range
(where BR >>1) is greater than the theoretical results ob-
tained from the spherical model [2,3], where R is the
average radius of the grains,
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and A, py, and 7 are the viscous wavelength, the density,
the frequency, and the shear viscosity, respectively. In
the frequency range from 0.1 to 1 mHz, A;~1073-10"*
cm in water. For sediments in nature, the sizes of the
grains in them are in the range of 1072-10"% which
means that if we observe them in the scale of A, not only
are the shapes of the sands in nature spherical ones, but
also their surfaces are not smooth, with many structures
full of hump and holes so that the fractal dimension of
the medium would be different from the one obtained on
the basis of the spherical model. On the other hand, ac-
cording to the cluster fractal, the medium made out of
the spherical grains can be referred to as a porous one,
which also has its own fractal structure. Mandelbrot pro-
posed comprehensive fractals [4]; after that, many works,
for example, Refs. [5] and [6], gave a summary account of
further progresses in this area. Recently, Katz and
Thompson (KP) investigated the fractal dimensions of
porous sandstones by the method of the scanning elec-
tronic microscope, and proposed [7]
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where P and D are the porosity and fractal dimension of
the medium, and /;, and [/, are the lower and upper
cutoffs between which the power law of the fractals is val-
id. Afterwards, a comment on the selection of /, and /,
and a reply to it were given by Roberts and KP, respec-
tively [8]. In this paper, taking the viscous wavelength as
a scale, we modified the theory of sound attenuation on
the basis of the fractals, then matched the experimental
data to the theory obtained; finally, the fractal dimension
of the medium to be measured was evaluated.
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As we already know, the sound attenuation « is pro-
portional to the dissipation power W, i.e.,

a~W . (3)

In an impressible homogeneous fluid, the dissipative
power [9] is

> V2 Tr <>
w=—¢ 1poV 7+ﬁ —(V-&) lds
av;
_faik 3 B dT’ (4)

which consists of surface and bulk integrals, where 7 is
the viscous tensor with the components o, and V and p,
are the velocity vector and the density of the fluid. In a
granular medium or in a porous medium, the dissipation
power W consists of W, in the fluid and W, in the solid.
If the solid is approximately an ideal one, in which the
friction can be neglected, its effect only offers some
boundary conditions that the fields in the fluid must satis-
fy. Thus the dissipation power is almost due to the fluid
and the boundary of the solid. As pointed out in Refs.
[2,3], the sound attenuation in the granular media is due
to the scattering and the viscosity. When the sound
wavelength A is much greater than the average radius of
the grains (i.e., 2mR /A << 1), the former can be neglected,
and only the viscous attenuation is a leading one, which
means that the sound wave makes the rigid grains oscil-
lating and results in viscous waves in the fluid. The latter
will be dissipated in the boundary layer. In consideration
of these points, the dissipation power can be denoted by a
form similar to Eq. (4), in which the field quantities p and
V must satisfy the boundary conditions at the surface of
the solid. For the granular media, the first term of the in-
tergrand in the surface integral corresponds to the
scattering, which does not predominate in the situation
just considered [2,3]. Thus the rest terms can be denoted
by W;.
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where the integrals are carried out in the fluid and at the
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boundary surfaces. Since the velocity of the medium is
zero at infinity, they can be denoted by the sum of the in-
tegrals at all the surfaces of the grains and in the bound-
ary layers of them, i.e.,

2
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where the relationships between the stress and strain
were used. Since all the grains are rigid, ¥ should be the
same in the surface of each grain, so that the surface in-
tegral becomes (V{7 )sS),, where (& )¢ is the average
of the viscous tensor over the surface of the nth grain. If
the sizes of these are larger than A, the contribution of
the surface integral will be smaller than the bulk one.
Thus we have

v, av,

+
ox;  Ox;

1

w,=3 {1 $V-51ds,—1n [

n

2

av, oV,
+ > >, >T1,,
n

ox, Ix;

le—%n<<

where 7, is the volume of the boundary layer referred to
as the nth grain, { ), denotes the average in the layer of
the nth grain, and { ), denotes an average over all the
grains, respectively. From Eq. (3), one has

a~—W~3r1,,
n

which means that the sound attenuation is proportional
to the volume of the viscous boundary layers of all the
grains, or the pore volume of the porous medium. As we
already know, this is a fractal one, the dimension of
which can be D. In this paper, we use the viscous wave-
length A, as a scale, so that

a~(A)"P.

If the medium consists of spherical grains, the sound at-
tenuation and the dimension are a, and D, respectively,
then we have

D

a0~(7»1) 0 .
if the average of the radii for both media are the same,
one has

*7"’()\1) 0
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and

L ~BRr)" "0, (5)
Qo
approximately, where R is the average radius of the
grains, in which the sizes of them obey a distribution.
According to Ref. [10], ¢ approximately obeys a normal
distribution where

@=—1n,(2R) .

From Eq. (5), we can see that the sound attenuation in
the medium which consists of nonspherical grains equals
the one in the medium which consists of spherical grains,

multiplied approximately by a factor of (BR)" ~°. Fig-
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FIG. 1. Sound attenuation a/f (dB/kHz m) vs f (kHz) in
riverbed sand. Curve 1: theoretical result on the basis of the
spherical-grain model. Curve 2: theoretical result modified by
fractals. Porosity: 0.45. Standard deviation: 0.041 cm. Average
radius: 0.017 cm. Ratio of densities: 2.62. Symbols: experimen-
tal data from Ref. [1].

ure 1 shows an application of Eq. (5), in which the
theoretical attenuation of a spherical modeling was
modified by the fractals as given by Eq. (5). Curves 1 and
2 denote the theoretical results of a,/f and a/f, which
are obtained by Ref. [2] and Eq. (5), respectively, and the
symbols denote the data of Ref. [1], where the average ra-
dius, the standard deviation, and the porosity are 0.017
cm, 0.041 cm, and 0.45, respectively. By means of the
optimization method to match the data to the theoretical
results obtained from Eq. (5), D —D;=0.36. This fact
shows us that if the shapes of the grains in the medium
are nonspherical ones, its fractal dimension will be larger
than the medium which consists of spherical grains.

Now we use Eq. (3) to estimate D,. From Fig. 1, we
regard A,;, which corresponds to f =550 kHz, as /; and
Aq2, which corresponds to f =50 kHz, as /,; thus we ob-
tain D =2.35 and D,=1.99, which is very close to 2.

In the higher frequency range (f =550 kHz) where
BR >227, the experimental data are even larger than the
theoretical results obtained by Eq. (5), which may be due
to the fact that in the higher frequency range the sound
wavelength A~R. In this situation not only can the
scattering not be regarded as a Rayleigh one, but in addi-
tion a new fractal scale may occur. In the lower frequen-
cy range, where A;>R and A>>R, we can regard the
shapes of all the grains as spherical ones, and can consid-
er the fractal dimension as D, which is different from D.

This project was supported by NSFC.

APPENDIX A

The measurement was carried out in a tank, in which
the water-saturated sand to be measured was degassed in
order to eliminate the disturbance of air bubbles. A pair
of transmitting and receiving transducers were placed in
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the sand. The distance between them was large enough
that the latter was in the far field of the former. A pulse
method was used to distinguish the reflection effects from
the boundary of the tank. At a series of points 7, the
sound pressure was measured in a range of frequency,
and the following formula was used to obtain the sound
attenuation coefficients «, i.e.,

1 alf;)r;
p(ri,fj)“"r—e J .

i

(A1)

where p(r;, f;) is the sound pressure measured at the ith
point and the jth frequency. Using the data and Eq.
(A1), the sound attenuation coefficients a(f i J=1,
2,...,N can be obtained, where N is the number of fre-
quencies designated.
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APPENDIX B

We denote the experimental data of the sound attenua-
tion coefficient

al=a,(f,), (B1)
and define an objection function

F=3 {a(1,R,0,D—Dg; f,)—a,(f)}?, (B2)

where R, Q, 7, and D —D, are the average radius, the
standard variation, the volume fraction of the grains in
sediments, and the fractal-dimensional difference; f, is
the nth frequency, which was designated in the experi-
ment; and a(7,R,Q,D —D; f,) is given by Eq. (5) in this
paper, into which ¢ can be substituted from Ref. [2]. By
means of an optimum computation in order to minimize
F, 7, R, Q,and D — D, can be determined.
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